OpenCV Bootcamp

Before you begin your journey into the exciting world of Computer Vision, Deep Learning, and AI, you need to become an expert at using the world’s largest resource of Computer Vision, the OpenCV library. This free OpenCV course will teach you how to manipulate images and videos, and detect objects and faces, among other exciting topics in just about 3 hours.

Course Code
OCVBC

Course Code
Preparatory

Available in
Python

Price
Free

Installation

Select your environment settings and Execute the command
or access the package via the link generated below.

Enroll for Free

Get Started with OpenCV the Right Way

Install, set up, and start building with OpenCV through our Free OpenCV Bootcamp - your first step into AI.

  • Official OpenCV Certification
  • 14 Modules
  • Videos
  • Quizzes
  • 3Hrs Content
  • Colab Notebooks

What's covered in this course?

  • Getting Started With Images
  • Basic Image Manipulation
  • Image Annotation
  • Image Enhancement
  • Accessing the Camera
  • Video Writing
  • Image Filtering
  • Image Features and Alignment
  • Panorama
  • HDR
  • Object Tracking
  • Face Detection
  • TensorFlow Object Detection
  • Pose Estimation using OpenPose

Tool Kit

Testimonials

Installation

Select your preferences and run the install command.

Operating System:
Linux
macOS
Windows
Building From Source:
Yes
No
Language:
Python
C++
Java
Android
iOS
JavaScript
Run this Command:
Default Result: pip3 install opencv-python

Verification

To ensure that OpenCV is installed correctly, we can run the following example to show how to read and display image

Python

Change path/to/image to a real path of an image, then run this demo
				
					import cv2 as cv
img = cv.imread("path/to/image")
    
cv.imshow("Display window", img)
k = cv.waitKey(0) # Wait for a keystroke in the window
				
			

C++

Change path/to/image to a real path of an image, then build this demo with OpenCV package and run it
				
					#include <opencv2/opencv.hpp>
#include <iostream>
using namespace cv;
int main()
{
    std::string image_path = "path/to/image";
    Mat img = imread(image_path, IMREAD_COLOR);
  
    imshow("Display window", img);
    int k = waitKey(0); // Wait for a keystroke in the window
    return 0;
}
				
			

JavaScript

Copy this code into an html file and open it in your web browser
				
					


  
  <title>Hello OpenCV.js</title>


  <h2>Hello OpenCV.js</h2>
  <p id="status">OpenCV.js is loading...</p>
  <div>
    <div class="inputoutput">
      <img id="imageSrc" alt="No Image" />
      <div class="caption">imageSrc </div>
    </div>
    <div class="inputoutput">
      
      <div class="caption">canvasOutput</div>
    </div>
  </div>
  
   <script> 
   let imgElement = document.getElementById('imageSrc');
    let inputElement = document.getElementById('fileInput');
    inputElement.addEventListener('change', (e) =&gt; {
      imgElement.src = URL.createObjectURL(e.target.files[0]);
    }, false);
    imgElement.onload = function () {
      let mat = cv.imread(imgElement);
      cv.imshow('canvasOutput', mat);
      mat.delete();
    };
    var Module = {
      // https://emscripten.org/docs/api_reference/module.html#Module.onRuntimeInitialized
      onRuntimeInitialized() {
        document.getElementById('status').innerHTML = 'OpenCV.js is ready.';
      }
    };
</script>