Getting Started

1. Introduction to Artificial Intelligence
 - History of AI
 - Applications of AI
 - AI in Computer Vision
 - AI Terminology
 - Introduction to Deep Learning
 - Deep Learning Frameworks

2. NumPy Refresher
 - NumPy Refresher Part-1
 - NumPy Refresher Part-2
 - NumPy Refresher Part-3

3. Introduction TensorFlow
4. What is inside an ML Algorithm
 - Machine Learning pipeline
 - Solving ML Problems
 - Gradient Descent for Optimization

5. Regression: A Classic Supervised Learning Problem

Assignment 1: Implement Leaky ReLU, Softmax and Convolution using TensorFlow

Assignment 2: Implement Gradient Descent for two variables
Module 2 : Neural Networks

1. Understanding Neural Networks
 - Deep Learning Overview
 - What is a Neural Network
 - Feature Vectors and Normalization
 - Demystifying Neural Networks

2. Building Neural Network in Keras
 - Introduction to Linear Regression
 - Auto-MGP Data Processing
 - Linear Regression with Keras
 - Binary Classification with Keras

3. Building Blocks of a Neural Network
 - Loss Function for Regression
 - Loss Function for Classification
 - Types of Activation Functions
 - How does the network learn?

4. Multi-class Classification using Keras
 - Classifying MNIST digits with a Multi-Layer Perceptron (MLP)

5. Model Complexity, Generalization and Handling Overfitting
 - Bias Variance Trade-off
 - How to Prevent Overfitting

Assignment 3: Applying a MLP on the Fashion MNSIT Dataset
Module 3: Convolutional Neural Network

1. Image Classification
 - Image classification using CNN

2. CNN
 - CNN Building Blocks
 - The Convolution Operation
 - Layers in CNN
 - Implementing LeNet in Keras

3. Evaluation metrics for Classification
 - Performance Metrics for Classification
 - Evaluation metrics for Classification

4. Building Models with Custom Data
 - Keras Image _Dataset_from_Directory
 - Overfitting and Data Augmentation

5. Working with pretrained Networks
 - Important CNN Architectures
 - Pretrained Models for Keras Applications
 - Training VGGNet from Scratch on Balls Dataset

6. Transfer Learning and Fine-Tuning
 - Transfer Learning with VGGNet as Feature Extractor on Balls Data
 - Transfer Learning with VGGNet as Feature Extractor on ASL Data
 - Fine Tuning VGGNet using ASL Data

Assignment 4: Sequential vs Functional API

Assignment 5: Image Classification using CNN
Module 4 : Advance Training Concepts

1. Optimizers
2. Handling Data in TensorFlow
 - Introduction to TF Data
 - Custom Data Loader using Sequence Model
 - TF Records
3. Learning Rate Schedulers
 - Learning Rate Decay Models
 - LR Schedulers
4. Gaining Insights
 - GradCam

Module 5 : Semantic Segmentation

5. Introduction to Semantic Segmentation
 - Introduction to Semantic Segmentation
 - Semantic Segmentation Datasets
 - Overview of Semantic Segmentation
6. Custom Data Loader
 - Introduction to Segmentation Datasets and Custom Data Loader
7. Transposed Convolution
8. Fully Convoluted Networks
Module 6 : Object Detection

1. Introduction to Object Detection
 - History of Object Detection
 - Object Detection Datasets

2. Hands on with Object Detector
 - Inference using Object Detection Models from TensorflowHub
3. Classification to Detection
 - Image Classification vs Object Detection
 - Revisiting Classification Pipeline
 - Encoding Bounding Boxes using Anchors
 - IoU
 - Encoding of Ground Truth
 - Multiple Anchors

4. Non Maximum Suppression (NMS)
 - Introduction to NMS
 - NMS vs Soft NMS

5. Evaluation Metrics
 - Why we need Evaluation Metrics
 - Building Blocks of mAP
 - Precision and Recall
 - Average Precision (AP) and Mean Average Precision (mAP)

6. Popural Object Detection Architectures
 - Traditional Object Detectors
 - Two Stage Object Detectors
 - YOLO: You Only Look Once
 - SSD: Single Shot MultiBox Detector
 - RetinaNet

7. TensorFlow Object Detection API
 - Installation of TFOD
 - Introduction and Inference using TFOD Pretrained Models
 - Data Preparation in TFOD
 - Pipeline Configuration in TFOD
 - Inference with a Pretrained Model

8. Create a Custom Object Detector
- Detector Architecture
- Anchor Boxes and Label Encoding
- Anchors Generation using Keras
- Loss Function
- Decode NMS
- Evaluator in the Pipeline
- Create a Custom Data Loader
- Training from Scratch

Assignment 7: Encoding and Decoding of Ground Truths for Anchor box implementation

Project 4: Object Detection

Module 7: Introduction to Generative Adversarial Networks

1. Introduction to GANs
2. Vanilla GAN using Fashion MNIST
3. DCGAN using Flickr Faces
4. CGAN using Fashion MNIST

Module 8: Introduction to Mediapipe and Applications

1. Introduction to Mediapipe
2. Posture Analysis using Mediapipe
3. Drowsy Driver Detection using Mediapipe