Module 1: Getting Started

1. Introduction to Artificial Intelligence
 - History of AI
 - Applications of AI
 - AI in Computer Vision
 - AI Terminology
 - Why Deep Learning so popular

2. Numpy Refresher
 - Introduction to NumPy
 - Why do we need a special Library for Maths an DL
 - NumPy Basic Operations
 - Mathematical Functions
 - Reshape & Combine Array
 - Element-wise Operations
 - Linear Algebra
 - Array Statistics

3. Introduction PyTorch
 - Why PyTorch
 - Introduction to PyTorch
 - PyTorch Basics

4. What is inside an ML Algorithm
• Machine Learning Pipeline
• Solving ML Problems
• Gradient Descent
• Gradient Descent for Optimization

Assignment1: Implement ReLU, Softmax and Neuron using PyTorch

Assignment2: Implement Gradient Descent for two variables

Module 2 : Neural Networks

1. Feature Vectors 1-D to N-D
 • Feature Vectors and Normalization

2. Neural Network Basics
 • What is Neural Network
 • Loss Functions for Regression
 • Loss Functions for Classification
 • Types of Activation Functions
 • How does the network learn
 • Demystifying Neural Networks

3. Binary Classification using Perceptrons
 • Binary Classification using a Perceptron

4. PyTorch NN Module
 • Introduction to pyTorch NN Module
 • PyTorch NN Module
 • MLP using Functional API
 • MLP using Sequential API

5. Image Classification using Multilayer Perceptron
• MLP Classifier for Handwritten Digits (MNIST)

Assignment 3: Implement MSE and MAE

Module 3: Convolutional Neural Network

1. Convolution Operation
 • What is Convolution Operation
 • CNN Building Blocks
 • Layers in CNN

2. How to implement LeNet using PyTorch
 • How to implement LeNet
 • Implementing LeNet using PyTorch
 • LeNet with BatchNorm
 • Effects of Batch Normalization

3. Evaluation of Classification Performance
 • Performance Metrics for Classification
 • How to Implement Classification Metrics

4. Introduction to Torchvision
 • TorchVision Overview
 • Datasets
 • What are the different Transforms used to Train a Network
 • Different Models in TorchVision
 • Utils: Utility Functions in TorchVision
 • IO Operations in TorchVision
 • Ops module in TorchVision

5. Important CNN architectures
• Different CNN Architecture
• Pre-trained Models in Torchvision
• Pre-trained Classification Models in TorchVision

Assignment4: Implement CNN for Image Classification on CIFAR10 Dataset

Module 4: Deep Neural Networks

1. Optimization
 • What are Optimizers
 • Learning Rate Decay Methods
 • LR Scheduler

2. Training Deep Neural Networks
 • Step1: Data understanding
 • Step2: Data Preparation
 • Step3: Check Training Pipeline
 • Step4: Train the Model
 • Step5: Improve the Model
 • Check Training Pipeline

3. How to add Robustness to a model
 • Bias variance Tradeoff
 • How to prevent Overfitting
 • Training with Regularization

4. Data Loader with Image Folder
 • How to load Custom Datasets in PyTorch

5. GPU access on Azure
• How to get Microsoft Azure Pass
• Redeem Azure Pass
• Create an Instance on Azure
• Run Jupyter Notebooks on Azure
• Login to your instance using SSH
• How to stop your instance

Assignment5: Implement Adam Optimizer

Project1: Implement an Image Classifier from scratch

Module 5: Best Practices in Deep Learning

1. Troubleshooting Training with Tensorboard
 - Tensorboard Overview
 - Tensorboard Dashboard
 - Logging using Tensorboard
 - Sharing Tensorboard Logs

2. Leveraging Pre-Trained models
 - CNN Architectures(Recap)
 - Fine-Tuning and Transfer Learning
 - Fine-Tuning using ResNet

3. How to structure your project for scale
 - Introduction to py_modules Package
 - Motivation of Trainer Pipeline
 - Hands-on Trainer Pipeline

4. PyTorch Lightning
 - Introduction to PyTorch Lightning
Module 6: Object Detection

1. Object Detection overview
 - Introduction to Object Detection
2. Evaluation Metrics
 - Evaluation Metrics for Object detection
 - Compute Evaluation Metrics
3. Traditional Algorithms in Object Detection
 - Different Traditional Algorithms
 - Implement Non-Maximum Suppression
4. Two stage Object Detectors
 - Introduction to Two Stage Object Detectors
 - Faster RCNN using TorchVision
 - Understanding Faster RCNN
 - Faster RCNN Fine-tuning
 - Faster RCNN Fine-Tuning Training

Module 7: Single Stage Object Detectors

1. YOLO
 - Introduction to YOLO
2. Single Stage Multibox Detector (SSD)
 - Introduction to SSD
 - SSD with PyTorch Hub
3. RetinaNet
 - Introduction to RetinaNet
 - RetinaNet with Detectron2
4. How to create Custom Single Stage Detector
• Detector NN Architecture
• Generating Anchor Boxes
• Matching Predictions with Ground Truth
• Loss Function
• Experiment

Assignment6: Focal Loss Implementation

Project3: Number Plate Detection

Module 8 : Segmentation

1. Semantic Segmentation Architecture
 • Semantic Segmentation Architectures
 • Dilated Convolution
 • Transposed Convolution
 • Fully Convolution Network (FCN)
 • U-Net
 • SegNet
 • Deeolab

2. Evaluation Metrics for Semantic Segmentation
 • Dice Coefficient Metrics

3. LinkNet Architecture
 • Introduction to LinkNet Architecture

4. Soft-Dice Loss
 • Introduction to Soft-Dice Loss

5. FCN and DeepLab using TorchVision
 • FCN and DeepLabV3 using Torchvision

6. U-Net for MRI Abnormality Segmentation

7. Train your Model from scratch

8. Instance Segmentation
 • Instance Segmentation using Mask RCNN

Assignment7: LinkNet Architecture with VGG16

Project4: Kaggle competition on Semantic Segmentation
Module 9 : Pose Estimation

1. Dense Pose
 - Introduction to DensePose
 - DensePose Inference
 - DensePose Training
2. Create your own Gym Trainer
 - Squat Checker

Project5: Create an App of your choice

Module 10 : Azure Deployment and Cognitive Services

1. How to your App on Azure Cloud Instance
 - Virtual Machine Creation for Deployment
 - Naive Deployment
 - Robust Deployment
 - Deployment using Azure App Service
2. Introduction to Azure Cognitive Services
 - Azure Cognitive Services

Project6: Deploy your App on Azure using Github repository

Module 11 : LibTorch

1. Introduction to TorchScript
2. Introduction to LibTorch
 - LibTorch Installation
 - Introduction to LibTorch
• From PyTorch to LibTorch
• Training with Custom Dataset

3. Introduction to ONNX