AI Courses by OpenCV

DEEP LEARNING WITH PYTORCH

Module 1: Getting Started

- 1. Introduction to Artificial Intelligence
 - History of AI
 - Applications od AI
 - AI in Computer Vision
 - AI Terminology
 - Why Deep Learning so popular
- 2. Numpy Refresher
 - Introduction to NumPy
 - Why do we need a special Library for Maths an DL
 - NumPy Basic Operations
 - Mathematical Functions
 - Reshape & Combine Array
 - Element-wise Operations
 - Linear Algebra
 - Array Statistics
- 3. Introduction PyTorch
 - Why PyTorch
 - Introduction to PyTorch
 - PyTorch Basics
- 4. What is inside an ML Algorithm

- Machine Learning Pipeline
- Solving ML Problems
- Gradient Descent
- Gradient Descent for Optimization

Assignment1: Implement ReLU, Softmax and Neuron using PyTorch

Assignment2: Implement Gradient Descent for two variables

Module 2: Neural Networks

- 1. Feature Vectors 1-D to N-D
 - Feature Vectors and Normalization
- 2. Neural Network Basics
 - What is Neural Network
 - Loss Functions for Regression
 - Loss Functions for Classification
 - Types of Activation Functions
 - How does the network learn
 - Demystifying Neural Networks
- 3. Binary Classification using Perceptrons
 - Binary Classification using a Perceptron
- 4. PyTorch NN Module
 - Introduction to pyTorch NN Module
 - PyTorch NN Module
 - MLP using Functional API
 - MLP using Sequential API
- 5. Image Classification using Multilayer Perceptron

• MLP Classifier for Handwritten Digits(MNIST)

Assignment3: Implement MSE and MAE

Module 3: Convolutional Neural Network

- 1. Convolution Operation
 - What is Convolution Operation
 - CNN Building Blocks
 - Layers in CNN
- 2. How to implement LeNet using PyTorch
 - How to implement LeNet
 - Implementing LeNet using PyTorch
 - LeNet with BatchNorm
 - Effects of Batch Normalization
- 3. Evaluation of Classification Performance
 - Perforamance Metrics for Classification
 - How to Implement Classification Metrics
- 4. Introduction to Torchvision
 - TorchVision Overview
 - Datasets
 - What are the different Transforms used to Train a Network
 - Different Models in TorchVision
 - Utils: Utility Functions in TorchVision
 - IO Operations in TorchVision
 - Ops module in TorchVision
- 5. Important CNN architectures

- Different CNN Architecture
- Pre-trained Models in Torchvision
- Pre-trained Classification Models in TorchVision

Assignment4: Implement CNN for Image Classification on CIFAR10 Dataset

Module 4: Deep Neural Networks

- 1. Optimization
 - What are Optimizers
 - Learning Rate Decay Methods
 - LR Scheduler
- 2. Training Deep Neural Networks
 - Step1: Data understanding
 - Step2: Data Preparation
 - Step3: Check Training Pipeline
 - Step4: Train the Model
 - Step5: Improve the Model
 - Check Training Pipeline
- 3. How to add Robustness to a model
 - Bias variance Tradeoff
 - How to prevent Overfitting
 - Training with Regularization
- 4. Data Loader with Image Folder
 - How to load Custom Datasets in PyTorch
- 5. GPU access on Azure

- How to get Microsoft Azure Pass
- Redeem Azure Pass
- Create an Instance on Azure
- Run Jupyter Notebooks on Azure
- Login to your instance using SSH
- How to stop your instance

Assignment5: Implement Adam Optimizer

Project1: Implement an Image Classifier from scratch

Module 5: Best Practices in Deep Learning

- 1. Troubleshooting Training with Tensorboard
 - Tensorboard Overview
 - Tensorboard Dashboard
 - Logging using Tensorboard
 - Sharing Tensorboard Logs
- 2. Leveraging Pre-Trained models
 - CNN Architectures(Recap)
 - Fine-Tuning and Transfer Learning
 - Fine-Tuning using ResNet
- 3. How to structure your project for scale
 - Introduction to py_modules Package
 - Motivation of Trainer Pipeline
 - Hands-on Trainer Pipeline
- 4. PyTorch Lightning
 - Introduction to PyTorch Lightning

- Inference on Production(ONNX)
- Transfer Learning with Lighning

Project2: Kaggle Competition on Image Classification

Module 6: Object Detection

- 1. Object Detection overview
 - Introduction to Object Detection
- 2. Evaluation Metrics
 - Evaluation Metrics for Object detection
 - Compute Evaluation Metrics
- 3. Traditional Algorithms in Object Detection
 - Different Traditional Algorithms
 - Implement Non-Maximum Suppression
- 4. Two stage Object Detectors
 - Introduction to Two Stage Object Detectors
 - Faster RCNN using TorchVision
 - Understanding Faster RCNN
 - Faster RCNN Fine-tuning
 - Faster RCNN Fine-Tuning Training

Module 7: Single Stage Object Detectors

- 1. YOLO
 - Introduction to YOLO
- 2. Single Stage Multibox Detector(SSD)
 - Introduction to SSD
 - SSD with PyTorch Hub
- 3. RetinaNet
 - Introduction to RetinaNet
 - RetinaNet with Detectron2
- 4. How to create Custom Single Stage Detector

- Detector NN Architecture
- Generating Anchor Boxes
- Matching Predictions with Ground Truth
- Loss Function
- Experiment

Assignment6: Focal Loss Implementation

Project3: Number Plate Detection

Module 8: Segmentation

- 1. Semantic Segmentation Architecture
 - Semantic Segmentation Architectures
 - Dilated Convolution
 - Transposed Convolution
 - Fully Convolution Network (FCN)
 - U-Net
 - SegNet
 - DeeoLab
- 2. Evaluation Metrics for Semantic Segmentation
 - Dice Coefficient Metrics
- 3. LinkNet Architecture
 - Introduction to LinkNet Architecture
- 4. Soft-Dice Loss
 - Introduction to Soft-Dice Loss
- 5. FCN and DeepLab using TorchVision
 - FCN and DeepLabV3 using Torchvision
- 6. U-Net for MRI Abnormality Segmentation
- 7. Train your Model from scratch
- 8. Instance Segmentation
 - Instance Segmentation using Mask RCNN

Assignment7: LinkNet Architecture with VGG16

Project4: Kaggle competition on Semantic Segmentation

Module 9: Pose Estimation

- 1. Dense Pose
 - Introduction to DensePose
 - DensePose Inference
 - DensePose Training
- 2. Create your own Gym Trainer
 - Squat Checker

Project5: Create an App of your choice

Module 10: Azure Deployment and Cognitive Services

- 1. How to your App on Azure Cloud Instance
 - Virtual Machine Creation for Deployment
 - Naive Deployment
 - Robust Deployment
 - Deployment using Azure App Service
- 2. Introduction to Azure Cognitive Services
 - Azure Cognitive Services

Project6: Deploy your App on Azure using Github repository

Module 11: LibTorch

- 1. Introduction to TorchScript
- 2. Introduction to LibTorch
 - LibTorch Installation
 - Introduction to LibTorch

- From PyTorch to LibTorch
- Training with Custom Dataset
- 3. Introduction to ONNX