A place where legacy creates future.

DLTK

Deep Learning with TensorFlow & Keras

Detailed Curriculum

DEEP LEARNING WITH TENSORFLOW & KERAS

Index

Module 1 **Getting Started** ı Module 2 **Neural Networks** Module 3 **Convolutional Neural Network** ı Module 4 **Advanced Training Concepts** ı Module 5 **Semantic Segmentation** Module 6 **Object Detection** Module 7 Introduction to Generative Adversarial Networks (GANs)

Ī

Module 8

Introduction to Mediapipe and Applications

1 Getting Started

1.1 Introduction to Artificial Intelligence

- 1.1.1 History of Al
- 1.1.2 Applications of Al
- 1.1.3 AI in Computer Vision
- 1.1.4 AI Terminology
- 1.1.5 Why is Deep Learning so popular
- 1.1.6 Deep Learning Frameworks

1.2 NumPy Refresher

- 1.2.1 Notebook: NumPy Refresher Part-I
- 1.2.2 Notebook: NumPy Refresher Part-II
- 1.2.3 Notebook: NumPy Refresher Part-III

1.3 Introduction to TensorFlow

1.3.1 Notebook: TensorFlow Basics

1.4 What's inside an ML Algorithm

- 1.4.1 Machine Learning Pipeline
- 1.4.2 Solving ML Problems
- 1.4.3 Notebook: Gradient Descent for Optimization

Assignmentl: NumPy
Assignment2: TensorFlow
Assignment3: Gradient Descent

QUIZ 1

University

2 Neural Networks

2.1 Understanding Neural Networks

- 2.1.1 Deep Learning Overview
- 2.1.2 What is Neural Network
- 2.1.3 Feature Vectors and Normalization
- 2.1.4 Demystifying Neural Network

2.2 Building Neural Networks in keras

- 2.2.1 Notebook: Introduction to Linear Regression
- 2.2.2 Notebook: Auto-MPG Data Processing
- 2.2.3 Notebook: Linear Regression with Keras
- 2.2.4 Notebook: Binary Classification with Keras

2.3 Building Blocks of a Neural Network

- 2.3.1 Loss Function for Regression
- 2.3.2 Notebook: Regression Loss
- 2.3.3 Loss Functions for Classification
- 2.3.4 Notebook: Classification Losses
- 2.3.5 Types of Activation Functions
- 2.3.6 Notebook: Activation Functions
- 2.3.7 How does Neural Network learn
- 2.3.8 Notebook: Backprop using Gradient Tape

2.4 Multi-Class Classification using Keras

2.4.1 Notebook: Classifying MNIST digits with a Multi Layer Perceptron (MLP)

Assignment4: Applying a MLP on the Fashion MNIST Dataset

2.5 Model Complexity, Generation and Handling OverFitting

- 2.5.1 Bias Variance Trade-off
- 2.5.2 How to Prevent Overfitting

Quiz 2

3 Convolutional Neural Networks

3.1 Image Classification

3.1.1 Notebook: Image Classification using CNN

3.2 Convolutional Neural Networks

- 3.2.1 CNN Building Blocks
- 3.2.2 The Convolution Operation
- 3.2.3 Layers in CNN
- 3.2.4 Kernels and Filters in CNNs
- 3.2.5 Notebook: Implementing LeNet in Keras

3.3 Evaluation Metrics for Classification

- 3.3.1 Performance Metrics for Classification
- 3.3.2 Notebook: Evaluation metrics for Classification

3.4 Building Models with Custom Data

- 3.4.1 Notebook: Keras Image_Dataset_from_Directory
- 3.4.2 Notebook: Overfitting and Data Augmentation

3.5 Working with pretrained Networks

- 3.5.1 Important CNN Architectures
- 3.5.2 Notebook: Pretrained Models from Keras applications
- 3.5.3 Notebook: Training VGGNet from scratch on Balls Dataset

3.6 Transfer Learning and Fine Tuning

- 3.6.1 Notebook: Transfer Learning with VGGNet as Feature Extractor on Balls Data
- 3.6.2 Notebook: Transfer Learning with VGGNet as Feature Extractor on ASL Data
- 3.6.3 Notebook: Fine Tuning VGGNet using ASL Data

Assignment5: Sequential vs Functional API

Assignment6: Image Classification using CNN

Quiz 3

Project 1: Implement an Image Classifier from Scratch

4 Advanced Training Concepts

4.1 Optimizers

- 4.1.1 Optimizers
- 4.1.2 Notebook: Optimizers

4.2 Handling Data in TensorFlow

- 4.2.1 Notebook: Introduction to TF Data
- 4.2.2 Notebook: Custom Data Loader using Sequence Model
- 4.2.3 Notebook: TF Records

4.3 LR schedulers

- 4.3.1 Learning Rate Decay Methods
- 4.2.2 Notebook: LR Schedulers

4.4 Gaining Insights

4.4.1 Notebook: GradCam

Assignment7: AdamW Optimizer Implementation

5 Segmentation

5.1 Introduction to Semantic Segmentation

- 5.1.1 Introduction to Semantic Segmentation
- 5.1.2 Semantic Segmentation Datasets
- 5.1.3 Overview of Semantic Segmentation Architecture

5.2 Custom Data Loader

5.2.1 Notebook: Introduction to Segmentation Datasets and Custom Data Loader

5.3 Transposed Convolutions

5.3.1 Transposed Convolutions

5.4 Fully Convolutional Networks

- 5.4.1 FCN Architecture
- 5.4.2 FCN on Road Data: CE Loss
- 5.4.3 Evaluation Metrics in Semantic Segmentation
- 5.4.4 FCN: Custom Metrics and Loss Functions

5.5 UNet

- 5.5.1 UNet Architecture
- 5.5.2 UNet on Road Data: CE Loss
- 5.5.3 UNet on CamVid Data: Dice Loss

5.6 Dilated Convolution

5.6.1 Dilated Convolution

5.7 DeepLabV3

- 5.7.1 DeepLabV3 Architecture
- 5.7.2 DeepLabV3+ on Road Data: CE Loss
- 5.7.3 DeepLabV3+ on CamVid Data: Dice Loss
- 5.7.4 DeepLabV3+ on CamVid Data: Best Results
- 5.7.5 DeepLabV3+ on SUIM Data: CE Loss
- 5.7.6 DeepLabV3+ on SUIM Data: Best Results

5.8 Segment Anything (SAM)

5.8.1 TF-SAM

Assignment8: PSPNet

QUIZ 4

6 Object Detection

6.1 Introduction to Object Detection

- 6.1.1 Object Detection Introduction
- 6.1.2 History of Object Detection
- 6.1.3 Object Detection Datasets

6.2 Hands on with Object Detection

6.2.1 Notebook: Inference using Object Detection Models from TensorFlowHub

6.3 Classification to Detection

- 6.3.1 Image Classification vs Object Detection
- 6.3.2 Revisiting Classification Pipeline
- 6.3.3 Encoding Bounding Boxes using Anchors
- 6.3.4 Intersection over Union (IoU)
- 6.3.5 Notebook: IoU
- 6.3.6 Encoding of Ground Truth
- 6.3.7 Multiple Enchors

6.4 Non Maximum Supression

- 6.4.1 Non Maximum Supression (NMS)
- 6.4.2 NMS vd Soft NMS
- 6.4.3 Notebook: NMS

6.5 Evaluation Metrics

- 6.5.1 Why need an Evaluation Metric
- 6.5.2 Building Blocks of mAP
- 6.5.3 Precision and Recall
- 6.5.4 Average Precision (AP) and Mean Average Precision (mAP)
- 6.5.5 Notebook: AP and mAP

6.6 Popular Object Detection Architecture

- 6.6.1 Traditional Object Detectors
- 6.6.2 Two Stage Objet Detectors
- 6.6.3 YOLO: You Only Look Once
- 6.6.4 SSD: Single Shot MultiBox Detector
- 6.6.5 RetinaNet

6.7 TensorFlow Object Detection API

- 6.7.1 Installation of TFOD
- 6.7.2 Introduction and Inference using TFOD Pretrained Models

- 6.7.3 Data Preparation in TFOD
- 6.7.4 Pipeline Configuration in TFOD
- 6.7.5 Download Pretrained model and Finetune
- 6.7.6 Inference with Fine-tuned Model

6.8 Object Detection KerasCV

- 6.8.1 KerasCV Introduction
- 6.8.2 Finetuning YOLOv8 KerasCV

6.9 Create a Custon Object Detector

- 6.9.1 Detector Architecture
- 6.9.2 Anchor Boxes and Label Encoding
- 6.9.3 Anchor Generation using K-Means
- 6.9.4 Loss Function
- 6.9.5 Decode and NMS
- 6.9.6 Evaluator in the Pipeline
- 6.9.7 Create a Custom Dataset Loader
- 6.9.8 Training from Scratch

Assignment9: Encoding of Ground Truths

QUIZ 5

Project 4:
Object
Detection

7 Introduction to Generative Adversarial Networks (GANs)

7.1 GANs

7.1.1 Notebook: Introduction to GANs

7.1.2 Notebook: Vanilla GAN using Fashion MNIST

7.1.3 Notebook: DCGAN using Flickr Faces

7.1.4 Notebook: CGAN using Fashion MNIST

8 Introduction to Meduapipe and Application

8.1 Application

- 8.1.1 Introduction to Mediapipe
- 8.1.2 Posture Analysis using Mediapipe
- 8.1.3 Drowsy Driver Detection using Mediapipe

